Surface deformation map data of the 2024 Noto Peninsula earthquake based on DEMs geomorphological interpretation and PIV analysis
国土地理院 地理地殻活動研究センター 地理情報解析研究室 吉田一希
2025年9月10日
概要
令和6年能登半島地震における地表変状の発生域を詳細に把握して今後の各種解析に利活用できるようにするため、航空レーザ測量による数値標高モデル(DEM)を用いて地形判読及びPIV(粒子画像流速測定法)解析を行い、地表変状分布図データを作成・公開しました。
To gain a detailed understanding of the areas affected by ground deformation caused by the 2024 Noto Peninsula earthquake and to facilitate future analysis, terrain interpretation and PIV (particle image velocimetry) analysis were conducted using a digital elevation model (DEMs) created from aerial laser surveying. A map data of ground deformation distribution data was created and made publicly available.
DOI
10.57499/RESEARCH_2025_082
公開データ一覧
データ名 (data name)
説明 (description)
形式 (format)
ダウンロード
地すべり・斜面崩壊・土石流ポリゴンデータ landslide polygon data
DEM地形判読により取得した地すべり等のポリゴン形式ベクトルデータ DEMs terrain interpretation-derived landslide polygon vector data
使用データ
石川県が2020年及び2022年に計測した航空レーザ測量による1 m解像度の数値標高モデル(地震前DEM)と、国土地理院・林野庁が地震後に計測した航空レーザ測量による0.5 m解像度の数値標高モデル(地震後DEM)を使用した。
The 1 m resolution digital elevation model (pre-earthquake DEMs) measured by aerial laser surveying conducted by Ishikawa Prefecture in 2020 and 2022, and the 0.5 m resolution digital elevation model (post-earthquake DEMs) measured by aerial laser surveying conducted by the Geospatial Information Authority of Japan and the Forestry Agency after the earthquake were used.
判読手法(method)
GISソフトウェア「QGIS」を用いて地震後DEMから1 m解像度の傾斜量図を生成し、令和6年能登半島地震によって生じた地すべり・斜面崩壊・土石流地形を目視判読してポリゴン形式で手動取得した。判読・図化は著者一人のみで全域すべてを縮尺1/2,500程度で行い、判読基準のずれが生じにくくするため全域の判読を3周回繰り返した。
地震前DEMと地震後DEMとの差分(広域変動補正済み)によって地形変化量を算出し、地すべりと斜面崩壊について地形変化量が大きなものを大規模地すべり・大規模崩壊とした。
Using GIS software “QGIS,” a 1-meter resolution slope map was generated from a post-earthquake DEMs. The landslides, slope failures, and debris flow terrain caused by the 2024 Noto Peninsula Earthquake were visually interpreted and manually extracted in polygon format.The interpretation and mapping were conducted by a single person across the entire area at a scale of approximately 1/2,500 to minimize discrepancies in interpretation criteria, with the entire area being interpreted three times to ensure consistency.
The difference between the pre-earthquake DEMs and the post-earthquake DEMs (with large-scale deformation correction applied) was used to calculate terrain change quantities, and landslides and slope failures with significant terrain change quantities were classified as large-scale landslides and large-scale slope failures.
使用データ
国土地理院・林野庁が地震後に計測した航空レーザ測量による0.5 m解像度の数値標高モデル(地震後DEM)を使用した。
A 0.5 m resolution digital elevation model (post-earthquake DEMs) created using aerial laser surveying conducted by the Geospatial Information Authority of Japan and the Forestry Agency after the earthquake was used.
判読手法(method)
GISソフトウェア「QGIS」を用いて地震後DEMから1 m解像度の標高段彩図・傾斜量図を生成し、令和6年能登半島地震によって生じた亀裂・段差を目視判読してライン形式で手動取得した。判読・図化は著者一人のみで全域すべてを縮尺1/2,500程度で行い、判読基準のずれが生じにくくするため全域の判読を3周回繰り返した。
Using GIS software “QGIS,” elevation color maps and slope maps with a resolution of 1 m were generated from post-earthquake DEMs data. Cracks and elevation differences caused by the 2024 Noto Peninsula Earthquake were visually identified and manually extracted in line format.The interpretation and mapping were performed by a single person across the entire area at a scale of approximately 1/2,500. To minimize discrepancies in interpretation criteria, the entire area was interpreted three times.
使用データ
石川県が2020年及び2022年に計測した航空レーザ測量による1 m解像度の数値標高モデル(地震前DEM)と、国土地理院・林野庁が地震後に計測した航空レーザ測量による0.5 m解像度の数値標高モデル(地震後DEM)を使用した。
The 1 m resolution digital elevation model (pre-earthquake DEMs) measured by aerial laser surveying conducted by Ishikawa Prefecture in 2020 and 2022, and the 0.5 m resolution digital elevation model (post-earthquake DEMs) measured by aerial laser surveying conducted by the Geospatial Information Authority of Japan and the Forestry Agency after the earthquake were used.
作成手法(method)
PIV解析ツールは画像処理ソフトウェア「ImageJ」のプラグイン「PIV」(by Qingzong TSENG)における「Iterative PIV (advanced Mode)」を使用した。
GISソフトウェア「QGIS」を用いて地震前DEM・DEM地震後DEMから2 m解像度の傾斜量図を生成した。
解析手法は国際航業株式会社「地形画像を用いた地形変化の解析方法及びそのプログラム(特許第4545219号)」(Mukoyama, 2011)を使用した。
The PIV analysis tool was used in the image processing software ImageJ plugin PIV (by Qingzong TSENG) in “Iterative PIV (advanced Mode)”.
Using GIS software “QGIS,” a 2 m resolution slope map was generated from pre-earthquake DEM and post-earthquake DEMs.
The analysis method was based on the method described in “Method for analyzing terrain changes using terrain images and program therefor (Patent No. 4545219)” by Kokusai Kogyo Co., Ltd. (Mukoyama, 2011).
・広域変動(wide surface defomation)
地震前後における128 m(64 pix)四方ごとのX・Y方向の平均変位量を64 m(32 pix)四方あたり1点の密度で求めた。水平変位量12 m以上の点と、地震前DEMにおけるNoDATA部分とその影響を受けている周辺部の点はエラーとみなして除去した。
The average horizontal displacement in the X and Y directions was calculated for each 128 m (64 pixels) square grid cell, with a density of one point per 64 m (32 pixels) square grid cell. Points with horizontal displacement exceeding 12 m and points in the NoDATA areas of the pre-earthquake DEMs and their surrounding affected areas were considered errors and removed.
・局所変動(local surface defomation)
地震前後における4096 m(2048 pix)四方ごとのX・Y方向の平均変位量を2048 m(1024 pix)四方あたり1点の密度で求めた。次に、広域変動成分を除去するため、QGISのジオリファレンサーにより、各変位量の点をGCPとして薄板スプライン法で地震前DEMを変形した。そして、変形後の地震前DEMから2m解像度の傾斜量図を生成し、前述の手法で128 m(64 pix)四方ごとのX・Y方向の平均変位量を64 m(32 pix)四方あたり1点の密度で求めた。最後に、水平変位量12 m以上の点と、地震前DEMにおけるNoDATA部分とその影響を受けている周辺部の点はエラーとみなして除去した。
The average displacement in the X and Y directions for each 4096 m (2048 pixels) square before and after the earthquake was calculated at a density of one point per 2048 m (1024 pixels) square. Next, to remove the wide surface deformation component, each displacement point was used as a GCP to deform the pre-earthquake DEMs using thin plate spline method via QGIS's georeferencer. Then, a slope map with a resolution of 2 m was generated from the deformed pre-earthquake DEMs, and the average displacement in the X and Y directions was calculated for each 128 m (64 pixels) square grid using the same method as before, with a density of one point per 64 m (32 pixels) square grid. Finally, points with horizontal displacement of 12 m or more, as well as points in the NoDATA areas of the pre-earthquake DEMs and their surrounding affected areas, were considered errors and removed.
フィールド属性情報(field)
CSV表
フィールド名(field name)
説明(description)
fid
ユニークID unique ID
X(m)
EPSG:6675におけるポイントのX座標(m) X-coordinate (m) of points in EPSG:6675
Y(m)
EPSG:6675におけるポイントのY座標(m) Y-coordinate (m) of points in EPSG:6675
uX(m)_local
X方向の水平変位量(局所変動)(m) Horizontal displacement in the X direction (local surface defomation) (m)
uY(m)_local
Y方向の水平変位量(局所変動)(m) Horizontal displacement in the Y direction (local surface defomation) (m)
引用文献
Mukoyama (2011) Estimation of Ground Deformation Caused by the Earthquake (M7.2) in Japan, 2008, from the Geomorphic Image Analysis of High Resolution LiDAR DEMs. J. Mt. Sci. 8, 239–245. https://doi.org/10.1007/s11629-011-2106-7.
データの利用方法と諸元情報 (How to use the data and specifications)
Surface deformation map data of the 2024 Noto Peninsula earthquake based on DEMs geomorphological interpretation and PIV analysis
Surface deformation map data of the 2024 Noto Peninsula earthquake based on DEMs geomorphological interpretation and PIV analysis
DOI
https://doi.org/10.57499/RESEARCH_2025_082
Authors
Kazuki YOSHIDA (Geographic Information Analysis Research Division, Geography and Crustal Dynamics Research Center, Geospatial Information Authority of Japan)
Publication date
Publisher:
Geospatial Information Authority of Japan
Citation
Kazuki YOSHIDA(2025)Surface deformation map data of the 2024 Noto Peninsula earthquake based on DEMs geomorphological interpretation and PIV analysis. Geospatial Information Authority of Japan Website. https://doi.org/10.57499/RESEARCH_2025_082
Surface deformation distribution associated with the 2024 Noto Peninsula Earthquake
Discription
This data was created using slope maps generated from a digital elevation model obtained by aerial laser surveying, and consists of the following: (1) polygon and line data of landslide areas and surface irregularities identified by visual interpretation of terrain, and (2) vector data of displacement caused by regional and local changes before and after the earthquake, obtained by PIV analysis.
Key word
DEM geomorphological interpretation, surface deformation, the 2024 Noto Peninsula earthquake, PIV analysis
Geolocation
Noto Peninsula, Ishikawa Prefecture, Japan (lat. approximately 36°59' to approximately 37°32' and lon. approximately 136°40' to approximately 137°22' )
Correspondence
Geographic Information Analysis Research Division (mail: gsi-gia+1=gxb.mlit.go.jp) (Replace = to @)